The p53 regulatory gene MDM2 is a direct transcriptional target of MYCN in neuroblastoma.

نویسندگان

  • Andrew Slack
  • Zaowen Chen
  • Roberto Tonelli
  • Martin Pule
  • Lisa Hunt
  • Andrea Pession
  • Jason M Shohet
چکیده

The MYCN oncogene is the major negative prognostic marker in neuroblastoma with important roles in both the pathogenesis and clinical behavior of this aggressive malignancy. MYC oncogenes activate both proliferative and apoptotic cellular pathways and, accordingly, inhibition of p53-mediated apoptosis is a prerequisite for MYC-driven tumorigenesis. To identify novel transcriptional targets mediating the MYCN-dependent phenotype, we screened a MYCN-amplified neuroblastoma cell line by using chromatin immunoprecipitation (ChIP) cloning. We identified the essential p53 inhibitor and protooncogene MDM2 as a putative target. MDM2 has multiple p53-independent functions modulating cell cycle and transcriptional events. Standard ChIP with MYCN antibodies established the binding of MYCN to a consensus E-box within the human MDM2 promoter. Oligonucleotide pull-down assays further established the capacity of MYCN to bind to this promoter region, confirming the ChIP results. Luciferase reporter assays confirmed the E-box-specific, MYCN-dependent regulation of the MDM2 promoter in MYCN-inducible neuroblastoma cell lines. Real-time quantitative PCR and Western blot analysis demonstrated a rapid increase in endogenous MDM2 mRNA and MDM2 protein upon induction of MYCN. Targeted inhibition of MYCN in a MYCN-amplified neuroblastoma cell line resulted in decreased MDM2 expression levels with concomitant stabilization of p53 and induction of apoptosis. Our finding that MYCN directly modulates baseline MDM2 levels suggests a mechanism contributing to the pathogenesis of neuroblastoma and other MYC-driven malignancies through inhibition of MYC-stimulated apoptosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mdm2 deficiency suppresses MYCN-Driven neuroblastoma tumorigenesis in vivo.

Neuroblastoma is derived from neural crest precursor components of the peripheral sympathetic nervous system and accounts for more than 15% of all pediatric cancer deaths. A clearer understanding of the molecular basis of neuroblastoma is required for novel therapeutic approaches to improve morbidity and mortality. Neuroblastoma is uniformly p53 wild type at diagnosis and must overcome p53-medi...

متن کامل

p53 is a direct transcriptional target of MYCN in neuroblastoma.

MYCN amplification occurs in approximately 25% of neuroblastomas, where it is associated with rapid tumor progression and poor prognosis. MYCN plays a paradoxical role in driving cellular proliferation and inducing apoptosis. Based on observations of nuclear p53 accumulation in neuroblastoma, we hypothesized that MYCN may regulate p53 in this setting. Immunohistochemical analysis of 82 neurobla...

متن کامل

MYCN-directed centrosome amplification requires MDM2-mediated suppression of p53 activity in neuroblastoma cells.

The MYC family oncogenes cause transformation and tumor progression by corrupting multiple cellular pathways, altering cell cycle progression, apoptosis, and genomic instability. Several recent studies show that MYCC (c-Myc) expression alters DNA repair mechanisms, cell cycle checkpoints, and karyotypic stability, and this is likely partially due to alterations in centrosome replication control...

متن کامل

WDR5 Supports an N-Myc Transcriptional Complex That Drives a Protumorigenic Gene Expression Signature in Neuroblastoma.

MYCN gene amplification in neuroblastoma drives a gene expression program that correlates strongly with aggressive disease. Mechanistically, trimethylation of histone H3 lysine 4 (H3K4) at target gene promoters is a strict prerequisite for this transcriptional program to be enacted. WDR5 is a histone H3K4 presenter that has been found to have an essential role in H3K4 trimethylation. For this r...

متن کامل

Molecular mechanisms of MYCN-dependent apoptosis and the MDM2–p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN-amplified neuroblastoma

The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14( ARF), significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment. In addition to its role in tumorig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 3  شماره 

صفحات  -

تاریخ انتشار 2005